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Abstract

The Whitney numbers of a finite geometric lattice L of rank r

are the numbers Wr-~ of elements of rank k end the coefficients

of the characteristic polynomial of L, for k ~ r • We—e~t~blish
~~~E ~~~~~~~~~~

the—f 1~~~~~-~ ,ower bounds”for the W~ and the absolute values

~nd deeer4be the lattices for which equality holds (nontriviaUy)~~.n each case;
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where n is the number of points of L..
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1. Introduction

Let L be a finite geometric lattice of rank r . The numbers

W1, W2, W3, ..., Wr i  of points, lines, planes, ..., copoints of L

are Its Whitney numbers of the second kind. Rota has conjectured that

the sequence [Wk~ 
is unD.lnodal: W~ > min fWI,Wk~ 

when I < ~ < k, a

property known to hold for the partition lattices [8], [9], matroid

designs [U), and all geometric lattices with eight or fewer points [3].

A related conjecture is Wr k  > W~ when k < r/2, which holds with

equality for modular geometric lattices. The :Iatter has been proved in

the ease k = 1 (1), [61, and the equality Wr i  = W
1 

shown to

characterize modular geometric lattices [6]. Apoarently little else is

known in general about the sequence CWKi~ 
except that W

k > W1 
for

1 < k  < r-l , which follows easily from Wr i  > W1.~
’) We prove here

(Theorem 1) a lower bound for Wk in terms of k,r, and the number

n = W1 of points of L, which improves the above bound substantially

when 2 < k  < r-2. Our bound is attained only by the direct product

of a modular plane and a free geometry when 2 < k  < r-2, and for

these lattices equality holds for all k. In view of the representation

of a finite lattice by its Hasse diagram, the term “slimmest ” is

accordingly a fitting description of these ext remal lattices . TTEJ
_________________________________________ ~~I~e SSthM

P 1Th (5] we prove W1+ W2+ ... + Wk < W r k + • • •  + ~~~~ + Wr i t  for afl. k. •VV t $~ct~i r~
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The integers W
k 

= r tt(O,x), the sum over all x of rank k in

a geometric lattice L with M6bius function it, are its Whitney numbers

of the first kind. These are the coefficients in the characteristic

(or chromatic) polynomial of L, of importance in the critical problem [111.

A well-known conjecture in graph theory asserts that the alternatinr

sequence (WkI 
is uniinodal in absolute value for graphic geometries,

and empirical evidence sui~gests this may hold in general. An inequality

for W = ~(o,i) in terms of the point-set-partition induced by a

maximal chain in L appears in [7]. We establish here (Theorem 2) a

lower bound on (_1)
k 

V
k 

in terms of k, r, and n, and show that

equality holds when k> 2 only for the direct product of a line and

a free geometry.

Our results are stated in *3 following a brief section (*2 ) on

preliminaries. In §~1~ we verify that equality ho1d~ in Theorems 1 and

2 for the lattices described . The proofs of these theorems appear in

*5 and *4 respectively.

_____________________________________________ 
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2. Preliminaries

Definitions and results required in the sequel are summarized in

this section. A detailed treatment of geometric lattices may be found

in [2) or

Let L be a finite lattice. If x < y, the interval [x,y) of

L is the sublattice [x,y) = (z ix  < z <y). An element y covers x

iff x < y and x < z <y implies z = y, thus [x,y] = (x,y}. A

point of L is an element covering 0, the minimum element of L.

A copoint of L is an element covered by 1, the maximum element of L.

A chain of length k in L is a linearly-ordered subset (x 1jx0< x,1< ... < x~)
of k + 1 elements. A maximal chain in [x,y] is a chain tx 11x0< x

1
( ... < x~)

such that x0 
= x, x,~ = y, and covers x~~1, 

1 < I <k. L satisfies

the Jordan-Dedekind chain condition 1ff all maximal chains in any

interval [x,y-J are of equal length. In this case the rank P(x) of

x E L Is the length of a xnaxima.1 chain in [O,x]. The rank of L is

the rank of its unit element 1.

A finite lattice L is g~çmetric when y covers x is equivalent

to y = x V p for some point p ~‘j x. Equivalently, the elements

covering an element x < 1  partItion the set of points ~j  x. The

Jordan-Dedekind chain conditions hold s in a geometric lattice, arid its

rank function satisfies the seinimodular incquslit~ p(x V y) + p (x A y) <

s(x) + 0 (y) . L is modular if equality holds for a.U. x ,y. If L is

geometric of rank r, elements of’ rank 1, 2, 3, r—l are points,

lines, planes, copoints, respectively. Every interval of a geometric

lattice is geometric, and direct products of’ (modular) geometric lattices

-~~ ________________ — . —.
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arc (modular) geometric lattices.

Geometric lattices are the order-theoretic counterparts of

combinatorial geometries [li], or matroids, the elements of the lattice

representing the closed subsets of points of the gec’i~etry, ordered by

inclusion. We shall employ geometrical language where convenient in

arguments below.

A separator of a geometric lattice L is an element x / 0,1
such that L ~ [0,x) x [x,l]. If x is a separator, then so is

y V(p!P a point ~‘j xl, and the mapping z ~ z 
V x is an isomorphism

between [o,yl and [x,l]. L is connected if it has no separators.

An isthmus is a separator which is a point of L. Then p is an isthmus

of L 1ff there is a copoint C such that q < c for every point q / p .
The truncation of’ a geometric lattice L of rank r is the subset

Cx E LIP(x) / r_i) in the induced order, a geometric lattice of rank

r-l. By a sequence of r-k truncations L may be reduced to a

geometric lattice L’ of rank k whose copoints are the elements of

rank k-i in L. We call L’ the truncation of L to rank k.

The free geometry (boolean algebra) with j points is the

geometric lattice (of rank j) in which every point is an isthmus, and

is isomorphic to the lattice of all subsets of Its point set under the

inclusion order. A i-point line is a geometric lattice of’ rank two

with j points. A i-point projective p~lane is a connected, modular

geometric lattice of rank three with j points. Each of these three

types of’ lattices is modular, hence so are direct products of them.

The M3bius function (iol of a finite lattice L Is the function

X L • Z defined recursively by ~(x,y) 0 if x ~ y, i~(x,y) 1

if x = y, and ~(x ,y) = -E(~ (x,z)Ix < z < y) if x < y.

-~ 
-
~ - ‘

~~~~~~~~~~ w p  _. 
~~~~~~~ ~~~~~~~~ 1 - - U~~W~~~ ’~~~r W~i J I~~~~~~~~~~~~~
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3. Main Results

Let L be a finite geometric lattice of rank r with ri points

and rank functIon 0. The Whitney numbers of L, of the second kind,

are the integers

(3.1) Wk IC x E L~P(x) = k)~, 0 <k <r.

Thus = = 1 and W
1 

= n by definition. Basterfield and Kelly [1)

and Greene [ 6 )  proved the inequality

(3.2) Wk > n , l < k < r-l.

Greene showed further that equality holds in (3.2) for some k,

2 <k < r-l, 1ff k = r-]. and L is modular. If 1 <k < r-l,

(3.2) follows immediately from

(3~3) W~~1 ~

on application of (3.3) to the truncation of L to rank k + 1.

Inequality (3.2) is strengthened substantially when 2 < k < r-2 by-

Theorem 1. Let L be a finite geometric lattice of rank r with n

points. Then

(3.h) w > (r - 2)(n - r) + (
r), 0 <~~ <r .k — k - i  k — —

When r > ‘4, equality holds in (3.11) for some k, 2 <k < r-2, if’f

L is (isomorphic to) the direct product of a modular plane and a

tree geometry.

By Greene ’s result, the latter conclusion is valid also when

equality holds in (3.11) for k = 2, r 3, in which case the free

geometry is trivial (rank zero).

— - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- —
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The extremal lattices may be described in greater detail. A

modular plane Is either projective, or if’ not connected , the direct

product of a line and a one-point free geometry. Denote by ~~~~~~~

a i-point free geometry, line, and (arbitrary) projective plane, re-

spectively, and let

(3.~) Q(i,j) 
= X F.

(3.6) p(i,j) = x F,~.

Then the conclusion when equality holds in (3.’4) may be stated :

L ‘~~
‘ Q(n-r + 2, r-2) or L ‘~~ P(n - r + 3, r-3).

The Whitney numbers of the first kind are the integers

(3.7) w~ = E IA(0,x), 0 ~ k < r,
p (x) =k

~i being the M~bius function of L. Since ~(x ,y) is nonzero when

x < y, with sign (-i)~~~’~ 
- (101, Wk is nonzero with sign

(1)k Thus

(3.8) w~ = (1)k W
k

is positive. Trivially, w~ = 1 and w~ = n.

Theorem 2. Let L be a finite geometric lattice of rank r with n

points. Then

(3.9) w~~~> (
~ ~)(n - r) + (

~), 0 < k  ( r.

Equality holds in (3.9) for some K, 2 < k  < r, 1ff L is isomorphic

to the direct product of a line and a free geometry.

Thus L ~ Q(n-r + 2, r-2) when equality holds.

- -- --~~~~~~~-—-~~ —-~~. — -~~~‘-~~—=-~ ~ —~--~~ —~~~~ —.‘— ~~~~~~~~~~~ - =- ‘~~~~ ~~ - - ~~~~~~~~~~~~~~~~ ~~~~~ 
— r  —

~~ 
imi ~~~~~~~~~~~~ .._. - -
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1. The Extremal Lattices

In this section we verify that equality holds in (3)1) for

c~(n-r + 2, r-2) and P(n-r + 3, r-3) and in (3.9) for Q(n-r + 2, r-2).

In the proof of Theorem 2 (~6), we shall require the fact that (3.9)

is a strict inequality when k > 2 for P(n-r + 3, r-3), a result most

conveniently established at this point.

In computing the Whitney numbers of a direct product, it is useful

to consider the polynomials

(‘i.i) cp (X) = E ~
r_ P(x)

xE.t,

(11.2) y(X) = E ~(O,X)X
r_ 0(

~
c)

XEL

where r is the rank of L. Thus the coefficient of k
r_k Is

in (‘4.1) and ‘4
k 

in (‘4 .2). The latter is the characteristic

pplynomial of L.

For a direct product L = L
1 

X L2 of geometric lattices,

= 01(x) + 02(y) and ~((0,0),(x,y)) = ~~0,x)~2(0,y) [10);

thus

(‘4.3) w~~)

(‘4.li) ~~~~~~

The polynomials q,(~ ), x (X) are well-known for a free geometry,

line, and projective plane, and are given below in Table 1. Since the

existence of implies ,~ 
= ~~ s + 1 for some integer a > 2, we

make this substitution where convenient.

- ° t~ -
~~ ~~~~~~~~~~~~~~~~~~ ‘ ~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~
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P;j ~~ (
~

) ~~~~ E~ (1)
i
(~) x~~

i’~O

Q + ~ 
+ 1 - x + (i-i)

3 2 3 (
2 2

P. A + j A  + j X + 1  A -  s + s ÷ l ) X  +
J 

s(s
2
+ s + l)X —

= ~2+ ~ + i.

Table 1.

From (‘4.3) and Table 1 we obtain the ç(À) - coefficient of Ar_k

for Q(n - r + 2, r-2), P(n - r + 3, r-3), respeètively, as

- 2 ,r - 2 - 2

r - 3~(ii.,) ,
r _ 3

)+(
r :3

)(n r +3 )+(
r :3

)(fl r +3)+( ;.
‘ K

Using Pascal ’s identity, both (‘4.’4) and (11.5) reduce to the right-hand

side of (3.’4).

prom (Ii .Ii.) and Table 1 we obtain the X(A)-coef’ficient of

( 1)k r-k
- A for Q(n - r + 2, r-2) as

(‘4.6) (
r
;
2) +(n r+ 2 )c~~

:
~~) + ( n _ r ÷ l ) (~~

:
~~),

which simplifies to the right-hand Bide of (3.9), and for P(n - r + 3, r-3)

as

3,r - 3~(‘4.7) (
1’ ; 3 + (2~ + i)(~ : ~) + ~(

2 
~ + i)(~ : ~) + ~ 

~k - 3
)S

- - - 
~~~~~~~~~~~~~~~~~~~~ .-—- ‘— —- — - .~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
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Sett ing n - r + 3 = S2 
+ s + 1 and using Pascal’s identity, we can

rewrite (4.6) as

(‘4.8) ~r 3) + (2 ~ + l)(~ : ~) + 2(s2+ ~ - ~~~ : ~) + (
2 

~ - ‘)(~ : ~~~~
.

The first two terms in (‘4 .7) and (‘4.8) are equal, but if 2 < Ic < r, at

least one of (
~ : ~~ 

(
~ : ~) Is positive. Since s > 2, ~~~~ s + 1) >

2(s2 
+ s - -

~
) and ~3 > ~2 + s - 1, hence (‘4.7) is strictly greater

than (‘4.8) when 2 <k <r. 

~::— ~~~ 
.—

~~~ 
.-- — — -—---~~ - ~~~~~~~~~ - ‘.—-- -~~-.= V. 

~~~~~~~~~~~~~~~ - - ‘ - 
~ ~~~~~~~~~~~~~~~~~~~~~
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5. Proof of Theorem 1

We proceed now to the proof of inequality (3 . 4) .  The following

notation will be used, for an interval [u,v] of L.

A~(u~v) = (x E [u,v1~ o(x) = j), cx~ (u ,v) IA~(u~v)t.

B~(u~v) = [x ~ [u ,v)!P(x) = i)~ ~j(u V) = lB~(u~v)!.

Thus w . = a~(u,v) + ~3~(u~v). Since A~(u~v) is the set of elements

of rank j - 0(u) in the interval [u ,v), we have

(~.i) W i ( ) ([U~V)) = a~(u,v).

We shall require the following lemma. A proof is given in our related

paper [5, Cor. to Thin. 4].

Lesmia. For any point p of L,

(5.2) a2(p,1) + 
~r_i

(1)
~
3
~ 
> a~(o,l).

The proof ’ of (3.4) will be by induction on the sum r + k. When

r + k < 5, the only nontrivial case is r = 3, k = 2, where (3.4)

follows from (~.2) (or from (3.3)). As the inductive hypothesis we

assume that if L’ is a geometric lattice of rank r ’ with ri ’

points, then (3 .4) holds for all k’ such that r’ + Ic’ < r + Ic, where

r + K > 6. By (3.3) we may assume 2 < K  < r-2, so r >4 .

Fix a point p of L. Then

(5 .3)  Wk = ~~(p,l) + ~~(p,1). 

T!11 JT~ -, ~*-w--~- i, * ~-~~~~ jr - - - -



1)

Let I cx2(p,1) = W1([p,l1). The interval [p,i] is of rank r -

so by (~ .i) and the inductive hynothesis,

(5.1~) o~ (p,i) ~ ~~ ~)C~ - r ~ 1) + (~ :
To obtain a lower bound on ~~(p,1), we first observe that y E A,~÷1(p,1)

iff y xVp for some x E B
k(P,1)~ 

The mapping x ~ x V p is thus

a surjectiori B
k(p,l) 

-

~~ 
A.
K l (n,1), 

and so partitions B
k(p,1) Into

inverse images of element s of A~ç 1 (p~l)~ The inverse image of

y E Ak l (p,1) is the subset A,~(0,y) - Ak(p,y) of Bk(p,l), of

cardinality cr~ (o,y) - a~(p,y). By (5.2), a~(O,y) - c~~(p,y) >

- c~2 (p,y). Thus

(5.5) ~~(p,1) > E a,(o ,y) - E
y~~~~1(p4) yEAK+l(P,l)

The two sums in (5.5) may be written as follows on interchanging the

order of suimnation in each.

(~ .G) E cz
1(0,y) a~ (p,l) + E ak (pVq,l)

yEA~~1 p,1) q 1

a~÷1(p, l) 
aEA2 (p~~~~~

’
~~ 

- 1) ajç÷1
(a,i).

cx
2

(p,y) E cx
~ 1

(a,1).
yE&~~1(p,l) aEA2(p,l) 

+

Substituting (~.6) and (5.7) into (5.5) gives

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~ ~~~~~~! ~~~~~~~~ ~~--~~~ - - - -- -~~~-~~~~-~~‘-~~~~~
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(s.8) 
~~~~~~ 

> ak+l(p,l) + E (a~(o,a) - 2) c~~~1(a,i).
- a(~A2(p, 

)

Wri ting x~~1(a ,l) = Czk÷l (a ,1) - c: ~) + (~ : ~) in (~ .8), and

noting that

(c~~(0,a) - 2 ) =n - 1 - L ,
a~A2(p,l

we obtain

(5.9) ~,~(p, 1) ~ ~~ 1(p,1) + (
~ : ~)(n - 1 - L) + c~

where

(5.10) C = E (cx~(O,a) - 2)( czk ~ (a,l) - (
~ ~))  > 0,

~ aEA~ (p, l) + -

since ci~ (0,a) = W
1([0,a]) > 2 and czk+l(a,1) = WIc 1([a,l}) ~ (~ :

The interval (a ,1] is of rank r - 2, and 2 < k  < r-2 implies

1 < K-]. < (r-2) - 1, so Wk l ([a,1]) : ~) 
~~~~~~~ [a,1) ~

Thus equality holds in (5.10) 1ff for every linc a on p, either

[O,al ~ F~ or [a,1] ‘
~~

The interval [p, l) is of rank r-], so by (5.1) and the inductive

— hypothesis

(5.u) ~~÷1(p,1) ? (
~ : - r + 1) + (r - 1)

We obtain finally, from (5.3), (~,‘4), (5.9), (s.io), and (~.n),

W
k > ~~ ~)(L - r + ~

) + ~: ~
) + 

~~ ~)(L - r + 1) +

(r l) + (
~ : ~xn - 1 - L) (~ : ~)(n-r) + (f ;).

_ _ _ _ _ _ _ _ _ _  _____________________________ 
- -II

— --- .- -- ,~~-=~~~ ~~~~~
— - -~ --~~ -~~~ - - - ---

~
-----— - - ——=~~-= _:

~_~wIi_ i~~~iJ~~~~~m-- • —
‘- .~~~~~ —-~~-—- — - ~~~

-— - -.
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Suppose now that 2 <k < r-2 and equality holds in (3 .4). Then

equality holds in (5.11-) and (5.11) for every point p of L, where

L = a2(p,1), and equality holds In (s.io) for every line a of L.

To prove that L ~ Q(n - r ÷ 2, r-2) or L ~ P(n - r + 3, r-3), we

again argue by induction on the sum r + K. Thus assume that if L’

is a geometric lattice of rank r’ with n’ points, and equality holds

in (3.4) for some K’, 2 <K’ < r’-2, then L’ ~ Q(n’ - r’+2, r’-2) or

~ Q(n’ - r’ + 2, r’-3), whenever r ’ + K’ < r + K. The initial case

is r + K = 6, when r = 4 , K = 2. As the proof for this case is

similar to the inductive step, it will be convenient to postpone it.

Thus we assume r + k > 7, so r> 5. Then at least one of the pairs

(r’,k ’)  = (r-l ,k-l), (r-1,k ) satisfies 2 < k ’  < r’-2, so by the

inductive hypothesis, for every point p of L, either

(5.12) [p,1] ~~ Q(L - r + 3, r-3),

or

(5.13) [p, il ‘~~ p(L - r + 4 , r-’4),

where £ = a2(p,l) is the number of lines of L on p. Also, from

equality in (5.10) we have for every line a of L, either [0 ,a] ~

or (a,1) F 2.

Suppose first that every line of L has two points ([0,a] ~ Fe).

Let p be a point of L. Since r? ~~, (5.12)-(5.13) imply that (p,1l

has an isthmus b. Then in L, b is the only line on p not on come

capoint c on p. The second point q on a is thus the only point

of L not on C, so q is an isthmus of L. The number of lines on q

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•— 

~~~~~~~~~~ —— — -.
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is n - 1, so by (5.12)-(5.13),

(5.14) L ~~ to,c] x [0,q] 
~ [p,

].) X F
1 ~ 

{
~ : ~ : ~; ~~~~

Suppose now that there is a line a of L with at least three

points. Then [a,l] Fr2 • Let U1, u2, . ..,  Ur 2  be the planes

on a. The join of any set of j of these is an element of rank

j + 2 in L. Let a point of a and suppose first that (5.13)

holds • Then there is an element x of rank four in L such that

x> p and {p,x] is a projective plane. There are then two points

of x on different planes through a, say u1,u2, respectively.

The plane p V p1 
V p2 

of x intersects u., 3 < i < r-2, only in p,

as otherwise u1V u2V u~ is of rank four . But then x contains only

two lines p V p1, p V p2 on p, contradicting that [p,x] is a

projective plane, hence has no two-point lines. Thus we may assume

that (5.12) holds for every point p on a, so at most one of the

planes on a contains more than one line on p other than a. Suppose

each contain two points off a, say p1,q1 in u1 and p2,q2

in u2. Since a has at least three points, there is a point p of

a not on either of the lines p1 
V q1, p2 

V q~. We then have three

- , lines a, p V p , p v q~ on p in u , i = 1,2, a contradiction.

Thus U1’ say, has only a single point q off a. Then q is the

only point of -L oft the copoint C U., V ... V U
r_2~ 

heflCe is an

isthmus of L. The number of lines on q is I n-i, and the

— -—
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argument preceding (5.14 ) can be repeated.

It remains only to verify the result for the case r = 4 , K 2.

From equality in (s.u) we have, by Greene’s result, that [p,l] Is

a modular plane for every point p of L. If there is a nontrivial

line a in L, the argument above gives an isthmu s q on one of the

two planes through a, and we are finished as before. If every line

has two points, then by equality in (3.4) we have W2 
(
~

) 2n - 2,

which implies n r 11, so L ~ F4 ~ Q(2,2).

Li 
_ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _  

_ _
— -~~~~~~------~~~~~-, - - —--— --- --- -~- -~~~~~~ --- ~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~
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6. Proof of Theorem 2

We consider first the case K = r in Theorem 2. Let ~~(0,x) =

p(x)
(-i) ~(0,x), a positive integer. If p is a point of L, we have

by Weisner ’s theorem [10],

(6.1) ~~(o,i) = F

where the sum is over all copoints c of L such that C p.

ProposItion 1. If L is a geometric lattice of rank r wIth n

points, then

(6.2 ) ~~(O,i) > n - r + 1, -

with equality iff L ‘~~ Q(n - r + 2, r-2).

Proof. The proof is by induction on r . Equality holds in (6.2) for

r = 2, so assume ind’~ctive1y that (6.2) holds for r ’ < r, where r > 3.

If c is a copoirit of L, let a(c ) denote the number of point s in

[0,c]. By the inductive hypothesis,

(6.3) ~i~ (O ,c) > a(c)  - r + 2.

Suimning (6.2) over all points p of L, and using (6.3), we obtain

(6.4 ) n ~~(o,i) > F (n - a(c))(a (c) - r + 2).
c copoint

But for any copoint c , r - 1 < a(c ) < n-i, so

(6.~ ) (n - a(c)) (a( c ) - r + 2) = (n — 1 — cx(c))(a(c) - fr —i )) + n — r + 1

? n - r + 1 ,

with equalit y 1ff a(c ) = r-1 or n-i . Thus from (6.4), (6.5), and ( 3.3)

I 
_ _   _ _ _ _

-- - ~~~~~~~~ ,~~.. ~---~~~~~~~~~~~~~~~~~~ __________
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(6.6) u~(0,i) > 
r-l (n - r + 1) > n - r + 1.

To show that equality in (6.2) implies L ~~
‘ Q(n - r + 2, r-2),

we again ar~- -ue by induction on r. The result is trivially true if

r r 2, so assume r > 3, and that equality holds in (6.2). r~y (6.6),

Wr i  = n, and from (6.5) every copoint of L has either r-i or

n-i points. If all copoints have r-1 points, then either

L ~ Fr ~ Q(2 ,r-2), or else L is the truncation to rank r of a free

geometry F~, n > r ! But in the latter case, Wr_]. ~r - l~ 
> n. If

some copoint c contains n - 1 points, the point p not on c is

an isthmus of L. Since equality must hold in (6.3) for every copoint,

[0,c] ‘~~ Q(n - r + 2, r— 3) . Then L ~ [0,c] x {O,p] ‘
~~ ~(n — r + 2, r—2 ),

and the leinna is proved.

Let A1 = (x E Llp (x) = i) and for x E L, let a(x) be the

number of points in (0,x]. Define

- 
- m~ = F a(x) ~~~0,x).

XEAK

We then have

Proposition 2. Let L be a geometric lattice of rank r with n

points . Then

(6.7) m~~> (n - r + l)Wk..1 + (r-lc) ~~~~ 1 < K  < r .

j Proof. The case K = 1 is trivial, and the first inequality in (6.6)

is the case K = r , so assume 2 < K  < r-1. Then by applying (6.1)

to the interval (0,xl below, we obtain

________________________________________________ - - - ~~~ - _ _  -, - 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ _~~ ~~~~~~~~~~~~ 

—



= F F ~~~0,x) = F F
XEA

K PEAT 
pEA~~xE~~

Ic J-

= F F ( F i.&~(0,y))
pEA1 xE~~ yEA~~~

p p
~~~

= F ~t~(0,y) F F 1
YEAK1 pEA1 xE~~

p~ y x=p\~r

= F p.~ (0,y) (n - cx(y) )
YEAK 1

+ += F ~t (0,y)(n - cx (y )  - r + K)  + (r-k) F ~ (0,y).
y EA~_, yEA.~~1

We next apply (6.2) to the interval (o,yl. 
-

F (a(y) - K + 2)(n - a(y) - r + K) + (r - k)w~- 

yEAh,

> (n_ r +l)Wk,÷(r _ k)w
~~
, 

-

the last inequality following since K - 1 < cx(y) <n - r + k - 1 for

y of rank K - 1, so

(a(y) - K + 2)(n - cz(y) - r + k )

= (a (y) - K + 1)(n - r + K - 1 - a(y)) + (n - r + i)

> n - r + l .

We consider now inequality (3.9) , arguing by induction on K.

The case k = 1 is trivial, and by (6.2) we may assume K <r, so

let 2 <K < r-l and suppose (3.9) holds for all K’ <k.

j  

_ _ _ _ _ _ _ _ _ _   _ _  _ _-
_ S 

-~~~~~~i~~~~ 
- --- —-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —----

~~~~~~~
- - ---h- -

~~
-
~~
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Let p be a point of L. Applying (6.1) to {O,yI, for

y E AK l , y > p, we obtain

= F ~(o,x) = F ~&~(0,x) + F ~~(0,x)
XEAK XEA K xEAK

x~p

= F ~(0,x) + F u~(0,y).
XEA

K ~~~k+l
y>p

Summing over all points p, and using (6.~),

nw~ = F a(x) ~~~~~~ + F a(y) ~t~(0,y) = m~ +

XEAK ~~~k+l

> (n_r+l)(WK 1  + wk ) + (r-k)w~~1 
+ (r-k-l)w1~ .

We now apply (3.4) and the inductive hypothesis, obtaining

(n-r+1+k)w~~> (n_r+l ) (Wk l  + wk) + (r-k)w~~1

(6.0) > (n_r4-1) {(~1)(n_r) + + c~:~)
(n_ r) + (

~))

+ (r-k) {c:~ xn_r + 
~k_l~}

= (n-r+ 1) {~~:~~ in-r + (
~)}

+ K{(~:~)
(n_r) + (

~)}

after simplification. Thus

(n-r+l+k)w~~> (n-r+1+k f(~1~) (n-r) + (
~)} ,

so (3.9) follows.

- - - - - -
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ --r ~~~~~~~~~i n  - —
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To comple te the proof of Theorem 2, assume equality hoir1~; in

(3.9) for some K, 2 < K < r. If h = r, the result followc from

Prop. 1, so suppose 2 <k < r-l. The proof is by induction on r.

Consider first the case r = 3, K 2. From (6.8), equality in (3.9)

imnl ies W2 
= n, so L is a modular plane, and therefore L ~ Q(n-l,l)

or L ‘~~ P(n,0). But the latter is impossible (6~4), hence L ~ ~(n-1 ,l).

Assume inductively that the result holds for r ’ < r , where

r > 4 . Then equality in (3.9) implies equality in (6.8), so wi,, Wk_ i

attain the lower bound in (3.4-). At least one of K - 1, K sat isfy

2 < K ’ < r-2, so by Theorem 1, either L ~ Q(n-r-1-2, r_2) or

L ~ r (n-r+3, r-3). But K > 2, so again the latter is impossible,

and the proof is complete .

I
- i -~~~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - -~~---~~~~- - - ~~ - • - - •
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______________
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